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Substate Tying With Combined Parameter Training
and Reduction in Tied-Mixture HMM Design
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Abstract—Two approaches are proposed for the design of
tied-mixture hidden Markov models (TMHMM). One approach
improves parameter sharing via partial tying of TMHMM states.
To facilitate tying at the substate level, the state emission proba-
bilities are constructed in two stages or, equivalently, are viewed
as a “mixture of mixtures of Gaussians.” This paradigm allows,
and is complemented with, an optimization technique to seek the
best complexity-accuracy tradeoff solution, which jointly exploits
Gaussian density sharing and substate tying. Another approach
to enhance model training is combined training and reduction of
model parameters. The procedure starts by training a system with
a large universal codebook of Gaussian densities. It then iteratively
reduces the size of both the codebook and the mixing coefficient
matrix, followed by parameter re-training. The additional cost in
design complexity is modest. Experimental results on the ISOLET
database and its E-set subset show that substate tying reduces
the classification error rate by over 15%, compared to standard
Gaussian sharing and whole-state tying. TMHMM design with
combined training and reduction of parameters reduces the
classification error rate by over 20% compared to conventional
TMHMM design. When the two proposed approaches were inte-
grated, 25% error rate reduction over TMHMM with whole-state
tying was achieved.

Index Terms—Parameter reduction, parameter training, state
tying, tied-mixture HMM.

I. INTRODUCTION

T HE HIDDEN Markov Model (HMM) is widely recog-
nized as a useful statistical tool for automatic speech

recognition. Optimal design of speech recognizers on the basis
of limited training data, must take into account the funda-
mental tradeoff between model richness and robustness. The
tied-mixture HMM (TMHMM) [1], [2] represents an important
approach to optimization of this tradeoff. With its universal set
of density functions for constructing state emission mixtures,
TMHMM offers the modeling capability of a large-mixture
continuous density HMM (CHMM), but with a substantially
reduced total number of Gaussian parameters to train. Thus, for
the typical case of insufficient training data, TMHMM achieves
significant performance gains over traditional CHMM.
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In spite of TMHMM’s success, several problems remain
open. One of them is how to optimally design the state emis-
sion density codebook and estimate the tying parameters.
While the natural design objective is accurate classification
of utterances, HMM training has traditionally been performed
using the maximum likelihood (ML) criterion which is, in
fact, a modeling criterion. The corresponding re-estimation
algorithms are effective and of manageable complexity [1],
[2]. The inherent and fundamental mismatch of ML with the
natural “true” objective, led to the development of a new class
of methods that seek the minimum classification error (MCE)
solution [3]. MCE methods offer improved performance but
encounter three main difficulties. The design complexity is
considerably increased, but this may not be prohibitive in
practical applications where the design is typically performed
off-line. MCE tends to be highly susceptible to poor nonglobal
optima (see [4] for the deterministic annealing approach to
combat this difficulty). Finally, the gains of MCE may not
generalize well outside the training set. Several complementary
measures have been proposed in recent years to determine
the model complexity during HMM design. These include
discriminant [5]–[7] or nondiscriminant [8], [9] measures.

Another problem in TMHMM design is how to reduce the
number of free parameters using parameter sharing or reduc-
tion techniques without significant loss of recognition accu-
racy. Appropriate parameter sharing and reduction can reduce
model complexity with minimal degradation in model accu-
racy and, thus, realize a better tradeoff between model com-
plexity and robustness. One such approach is to complement
distribution sharing with state tying. Similarly to pdf tying, state
tying attempts to refine the design tradeoff due to the funda-
mental conflict between the accuracy of acoustic modeling and
insufficient training data. By tying some of the HMM states,
training robustness is enhanced and this, in turn, makes it fea-
sible to include a larger number of states in the HMM and,
thereby, achieve higher accuracy. However, the traditional pro-
cedure suffers from several shortcomings. First, state tying typ-
ically involves full tying of states, which consists of making
certain states identical. This extreme measure yields substan-
tial complexity reduction, but may cause serious degradation in
model accuracy. Second, although efficient optimization algo-
rithms have been proposed for state tying [10]–[13], they are
typically initialized in a greedy suboptimal fashion. This may
impact the performance, especially in the case of a large number
of Markov states. Third, the optimization of state tying is nor-
mally performed separately from the optimization of pdf sharing
and, consequently, the overall system is suboptimally designed.
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Fig. 1. Mixing coefficient matrix of TMHMM.

A related recent class of state tying techniques is that of
phonetic tied-mixture models [14]–[16], which was enhanced
by probabilistic classification of HMM states [17], and is cur-
rently used in several well-know systems (such as HTK’s “soft
tying” [18]). In these methods, Gaussians from a particular
state are allowed to be used in other mixture distributions with
similar acoustics in a manner governed by a decision tree.
While these approaches overcome the initialization difficulty of
the state-to-class probabilities via phonetic decision trees, they
are constrained by the underlying phonetic structures, namely,
pre-specified or trained tying rules, and are hence suboptimal.

In this paper, we propose thesubstate tying(SST) approach
[19], where Markov states are partially tied, in contrast with
traditional whole state tying where tied states are made iden-
tical. In order to develop an automatic procedure for substate
tying, different from the phonetic-decision-tree-based proba-
bilistic classification or soft tying, we redefine the state emis-
sion probabilities as a two-stage mixture. In other words, instead
of a standard mixture of Gaussians, we view the state emission
pdf as a mixture of (smaller) mixtures of Gaussians. The idea
is that we create an intermediate level for tying, which is po-
sitioned between the Gaussian tying of TMHMM and whole
state tying which ties the entire state mixture. Such interme-
diate level of tying allows one to find a better tradeoff between
complexity and accuracy. Optimization of substate tying is au-
tomatically performed by a technique based on the Expecta-
tion-Maximization (EM) algorithm. We show that with this ap-
proach, the mixing efficiency in TMHMM is improved, the need
for tied-state initialization is circumvented, and that the refined
tradeoff yields better compromise between complexity and ac-
curacy.

To attack the model training problem, we further propose a
new approach ofcombined training and reduction(CTR) of pa-
rameters [20]. The Gaussian density codebook is first initialized
with a large number of free parameters, and then downsized
to the target codebook size using a proposed “minimum-par-
tial-conditional-entropy” parameter reduction techniques. The
procedure simultaneously reduces the size of the density code-
book, and trains the Gaussian parameters. This optimization is
performed jointly with a parameter reduction procedure that dy-
namically reduces the mixing coefficient matrix. The overall
method is shown to significantly outperform standard TMHMM
design [2] when tested on the ISOLET database and its E-set
subset. These performance gains are achieved by automatic de-
sign without incorporating any prior phonetic knowledge as is
commonly done in “manual” tying techniques [21].

The organization of this paper is as follows. The next section
introduces the substate tying (SST) approach. In Section III,
combined training and reduction (CTR) of parameters is
proposed. The SST and CTR algorithms are then integrated to
achieve additional gains. Experimental results are summarized
and discussed in Section IV.

II. SUBSTATE TYING

A. Substate Tying Versus Whole-State Tying in TMHMM

TMHMM [1], [2] uses a universal codebook of Gaussian den-
sities. State emission probability distributions are constructed
as mixtures of densities from the codebook with appropriate
mixing coefficients. Let there be classes, each represented
by an HMM of states, and let there be a universal codebook
of Gaussian densities. The emission probability distribution
for state —state in the HMM representing class , is

(1)

where is a Gaussian density whose mean and variance
are specified in the parameter vector. The universal codebook
may be simply represented by the set ofparameter vectors

corresponding to Gaussian densities.
The mixing coefficients have obvious probabilistic interpreta-
tion , and satisfy

State tying in TMHMM may be specified by operations on
the mixing coefficient matrix: , which is shown
in Fig. 1. The traditional whole-state tying technique imposes
that two (or more) columns be identical and thereby ties the
corresponding states

The proposed substate tying approach ties subsets of the
column elements and hence allows the states to be distinct

for some

.

Substate tying enables the implementation of intermediate
levels of tying, which are not achievable by whole-state tying,
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and provides higher accuracy and better mixing efficiency
in TMHMM. However, substate tying poses a substantial
optimization challenge, as now the tying process involves many
more degrees of freedom. In the next subsection we propose a
simplified tying algorithm that operates on two-stage mixtures
and considerably reduces the tying optimization complexity
but, nevertheless, captures substantial gains due to partial state
tying.

B. Substate Tying With Two-Stage Mixtures

Standard TMHMM can be viewed as tying “single-stage”
mixtures as specified by the matrix of Fig. 1. In this paper,
two-stage mixtures are proposed as a practical way to imple-
ment substate tying. We define the state emission probability
distribution as a mixture of Gaussian mixtures, or a mixture of
“submixtures.” We define submixtures ,
each of which is a mixture of Gaussians from a codebook of

Gaussians: . The first mixing stage is at
the Gaussian level, where the “Gaussian mixing coefficient ma-
trix” (GMCM) is used to specify the submixtures in terms of
the available Gaussians (see Fig. 2). The second mixing stage
is at the submixture level, as given by the “submixture mixing
coefficient matrix” (SMCM) of Fig. 3. The emission probability
distribution for state is now rewritten as the mixture

(2)

where is a Gaussian density whose mean and variance are
specified by the parameter vector, and

which naturally satisfy

and

We make the following straightforward observations about
the framework of TMHMM with two-stage mixtures:

• if GMCM is diagonal (and ), the framework de-
generates to standard TMHMM;

• if GMCM is diagonal and SMCM contains identical
columns, we obtain the known TMHMM with whole-state
tying;

• without the above constraints, GMCM and SMCM pro-
vide a generalized framework to implement both Gaussian
sharing and substate sharing, where a refined tying-accu-
racy tradeoff is achieved, and which subsumes the stan-
dard schemes as extreme special cases.

In practice, (2) can be simplified by only taking into account
significant values of and (as is done for standard
TMHMM [2])

(3)

where and are the re-normalized significant mixing
coefficients. This brings about a substantial decrease in the

Fig. 2. Gaussian mixing coefficient matrix (GMCM) of the two-stage
tied-mixture HMM (TS-TMHMM).

number of free parameters without significant loss in recogni-
tion accuracy, as will be further discussed in Section III.

C. Re-Estimation

Parameter re-estimation for TMHMM with substate tying
(SST-TMHMM) is similar to that of standard TMHMM except
that the procedure involves three steps. Let us denote by

the probability that state is visited at time ,
given that the model emits , i.e.,

(4)

(which may be calculated as in [1]).
We consider

(5)

and, by marginalization

(6)

Parameter re-estimation based on the EM algorithm is carried
out as

1) re-estimation of Gaussian pdfs

(7)

(8)

where denotes transposition;
2) re-estimation of GMCM

(9)

3) re-estimation of SMCM

(10)
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Fig. 3. Submixture mixing coefficient matrix (SMCM) of the two-stage tied-mixture HMM (TS-TMHMM).

III. COMBINED PARAMETER TRAINING AND REDUCTION

A. Basic Approach

In this subsection we give a high-level description of, and
motivation for, the combined training and reduction (CTR) ap-
proach, which can be applied to general HMM design, and is
specialized here to two-stage mixture TMHMM design.

Let the parameter set be , where is the
prior probability, is the set of state transition probabilities,
contains the Gaussian codebook parameters, andcontains all
(Gaussian and submixture) mixing coefficients. Let the target
number of free parameters be . A high-level diagram for the
CTR Algorithm is given in Fig. 4. The training process consists
of two iterative optimization loops: the inner loop optimizes the
system for a fixed number of free parameters (FNFP), and is
hence referred to as the FNFP loop. Here, a standard HMM
training technique may be used. The outer loop optimizes de-
cisions for parameter reduction (PR) and is called the PR loop.
The initial number of free parameters is , and either a fixed or
a variable parameter reduction rate may be employed. A group
of parameters is identified and eliminated in each iteration. The
decision is based on a performance criterion derived from the
previous FNFP loop. The overall process, of parameter estima-
tion and reduction, continues until the target number of free pa-
rameters has been reached.

The reduction procedure targets a subset of the HMM param-
eters. We will restrict our treatment to the Gaussian parameters

and mixing coefficients . In the general derivation of CTR,
the target parameters depend on the type of HMM. We seek
to reduce the number of codewords in a DHMM, the number
of Gaussian densities per state in a CHMM, and both the total
number of Gaussian densities and the number of mixing param-
eters in a standard TMHMM or two-stage mixture TMHMM.
The remainder of the paper will focus on the latter.

The motivation for our particular choice of CTR implemen-
tation is due to the following somewhat overlapping points:
1) design complexity is in the order of that of ML-based re-esti-
mation; 2) cross-model considerationsare involved in the design;
and 3) parameter training and parameter reduction are combined.

Most of the computation performed during CTR design is
in the form of ML re-design of HMM systems in the FNFP
loop. ML-based re-estimation formulas are known to be rela-
tively fast, but it ignores cross-model considerations. In the pro-
posed approach, however, ML re-estimation is first performed
on a large HMM parameter set, which is then downsized to

Fig. 4. CTR algorithm for HMM design.

the target size. The reduction procedure attempts to eliminate
only those parameters that offer little or no contribution to the
recognition performance of the system. This may be measured
naturally by MCE [3], or implicitly by Maximum Mutual In-
formation (MMI) [22], such as the approach proposed in [7].
Since only the most superfluous parameters have been removed,
the system performance is roughly maintained while the total
number of parameters is reduced. Once the PR loop is com-
pleted, the parametric structure of the system has been changed,
and it is no longer expected to be at a local optimum. A new
round of re-estimation may therefore be carried out based on
the now improved initial values, and so on.

By using ML re-estimation for the FNFP loop and alternating
it with an MCE or MMI based PR loop we achieve the desired
properties enumerated above. The design complexity is largely
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determined by the ML re-estimation procedure, and is there-
fore only moderate. However, cross-model information is not
ignored, as the PR loop takes into account inter-class relation-
ships to adjust the design for better discrimination.

Parameter estimation and parameter sharing have typically
been considered separately in the literature. Parameter estima-
tion is viewed as a performance-enhancing procedure. Param-
eter sharing techniques are mainly used for complexity-reduc-
tion at the cost of reduced recognition accuracy. However, this
is not necessarily always the case. In fact, as will be shown by
the CTR algorithm, parameter estimation and parameter sharing
can be combined to achieve both complexity reduction and per-
formance-enhancement.

Before proceeding with direct implementation of the ap-
proach to TMHMM design we introduce a further compromise
to reduce the design complexity. Although the MCE or MMI
criteria may be used effectively for the reduction process,
as explained earlier, they still involve an undesirable and
substantial cost in computational complexity. In this work
we chose to incorporate within the framework a “minimum
partial conditional entropy” parameter reduction algorithm,
which substantially reduces the computational burden and, yet,
achieves considerable gains. The evaluation of the merits of a
high complexity approach that optimizes combined parameter
estimation and reduction solely with respect to the MCE
criterion is currently under investigation.

B. Parameter Reduction

The proposed parameter reduction approach in two-stage
mixture TMHMM is concerned with three reducible sets of
parameters: 1) Universal codebook elements or Gaussian
parameter vectors ; 2) GMCM mixing coefficients ; and
3) SMCM mixing coefficients . The reduction may be
performed by operations on the matrices GMCM or SMCM,
and will be explained while referring to Figs. 2 and 3. We
restrict our attention to the following operations:

• row deletion in GMCM—elimination of a Gaussian den-
sity from the universal codebook;

• column deletion in GMCM, and corresponding row dele-
tion in SMCM—elimination of a sub-Gaussian mixture;

• column element thinning in GMCM—elimination of
Gaussian components from a submixture;

• column element thinning in SMCM—elimination of sub-
Gaussian mixtures from a state emission distribution.

A minimum-entropy criterion has been previously proposed
and used for distribution-sharing [10]. In this paper, we apply a
minimum-entropy approach to row deletion within GMCM and
SMCM, but, in a fundamentally different way. Our focus is on
thepartial conditional entropy(PCE) as explained next.

The marginal probability of a universal codebook elementis

(11)

where

(12)

Consider the posterior probability

(13)

where the last approximation is valid if the states are roughly
equiprobable. Note that in general the criterion will be calcu-
lated without the approximation, but complexity can be saved
when it is valid.

Let be the posterior submixture entropy conditional
on Gaussian density

(14)

whose computation may employ the approximation of (13).
Note that a high entropy value of may indicate
less discriminatory information for the specific Gaussian pdf
(i.e., all bins are uniformly distributed), and, hence, limited
importance to the overall system performance, compared with
other low-entropy pdfs. Moreover, let us define the partial
conditional entropy which measures the contribution
of Gaussian density to the overall conditional entropy

(15)

and

One may view as measure of the contribution of
Gaussian to the overall uncertainty given the selected pdf
from the Gaussian pool. Hence, a higher value of
corresponds to less discriminatory information.

The Minimum-PCE approach to reduce the universal code-
book consists of removing codebook elements with high PCE
value. The Gaussian pdfs to be eliminated are selected as

(16)

where is a pre-defined entropy threshold. In this way, the
number of free parameters is reduced, while the recognition ac-
curacy is roughly maintained, which leads to a more efficient
use of model parameters.

A similar definition for partial conditional entropy of states
given submixture is

(17)

where is defined in (12) and

(18)
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Here too, the last approximation assumes the equiprobability of
states similarly to (13). The minimum-PCE reduction of sub-
mixtures is performed by removing the high entropy submix-
tures, i.e., remove

(19)

For column element thinning in SMCM, we performed
a probabilistic dynamic reduction as is commonly done in
traditional TMHMM design. For each state , the thinning
is performed by: sorting the mixing weights in ascending order

, computing

(20)

(where is a predefined reduction rate parameter), and
thinning the state’s mixture by setting to zero the firstmixing
coefficients: .

Similarly, column element thinning in GMCM is imple-
mented by sorting the mixing weights in ascending order

and setting to zero the first mixing
coefficients: , where

(21)

IV. EXPERIMENTS

To test the performance of TMHMM design with substate
tying and combined parameter training and reduction, exper-
iments were carried out on the speaker-independent ISOLET
database and its E-set subset (obtained from OGI [23]). The
E-set database’s recognition task is to distinguish between nine
confusable English letters,b, c, d, e, g, p, t, v, z, while the
complete ISOLET involves all the 26 English letters. Both
databases were generated by 150 speakers (75 male and 75
female) and include one utterance per speaker. Of the 150
speakers, 60 male and 60 female speakers were selected at
random for training, and the remaining 30 speakers were set
aside for the test set. The experiment was repeated 300 times
with random re-partition into training and test sets, and the
average performance over all trials was recorded. All reported
results are in terms of test set performance.

In our experiments, 26-dimensional speech features were
used, with 12 mel-frequency cepstral coefficients (MFCC) and
12 delta cepstrums, complemented with log energy and delta
log energy. The analysis frame width is of 30 ms and the frame
step is 10 ms. A Hamming Window was used. Two whole-word
HMM models were included for each letter, to allow for
variation between male and female speakers. For simplicity,
but without loss of generality, we only tested TMHMM with
diagonal covariance matrices. A similar design approach can
be applied to TMHMM with full covariance matrices, albeit at
higher complexity.

More specifically, Markov states were assigned to each of
the whole-word HMM’s. Hence, before parameter reduction,

the total number of HMM states is . The Gaussian code-
book consists of pdfs. If the HMM’s are initialized with one
Gaussian pdf per state, as in all of our experiments,equals
the total number of HMM states, i.e., . More-
over, submixtures were adopted in the proposed two-stage
TMHMM (TS-TMHMM) design, where was initialized as

in our experiments, to enable initialization by the con-
ventional TMHMM training technique.

The experiments were organized as follows. We first
compared the proposed substate tying within TS-TMHMM
with standard CHMM, TMHMM, as well as TMHMM with
whole-state tying. Secondly, we evaluated the performance
of parameter reduction based on minimum-PCE and dynamic
thinning, incorporated it within the framework of combined
training and reduction (CTR) of parameters, and compared it to
different types of HMM model design. Finally, we optimized
TS-TMHMM design with the CTR algorithm, and thereby
integrated both new approaches, namely, substate tying and
CTR.

We recognize that the database adopted here, namely,
ISOLET with the English alphabet and its E-set, represents
a highly confusable task, where many letters show similar
or identical vowels. As such, it offers a design challenge for
testing our proposed techniques. However, there is no guarantee
that the gain level achieved in this specific recognition task will
be sustained in the case of large vocabulary continuous-density
HMM systems.

A. Substate Tying in Tied Mixture HMM

As explained in Section II, substate tying is an intermediate
level between pdf sharing (TMHMM) and whole-state tying.
EM-based re-estimation is used to optimize the tying process.
In our experiment, we compared substate tying with standard
TMHMM [2] and TMHMM with whole-state tying [10], while
CHMM is included as a base-line model. For CHMM, one
single Gaussian pdf was assigned and trained for each Markov
state. These Gaussian pdfs were pooled together as the initial
Gaussian codebook for standard TMHMM design. During the
design of whole state tying, the Markov states were clustered
via the minimum entropy criterion defined in [10]. In TMHMM
with substate tying, the Gaussian submixtures were initialized
with Gaussian mixtures for each Markov state as in traditional
TMHMM design, where GMCM was equivalent to the mixing
coefficients matrix in conventional TMHMM, and SMCM was
set as a diagonal matrix. For a concrete example, if the number
of states for each HMM is 7 (as shown in the first row of
Table I), there will be 7 distinct Gaussian pdfs in each CHMM
(one for each state), a distribution pool of 7 single Gaussian
pdfs in each TMHMM, and a submixture pool of 7 Gaussian
submixtures, consisting of 7 distinct single Gaussian pdfs, in
each TS-TMHMM. While the number of single Gaussian pdfs
and Gaussian submixtures were fixed here, the constraint can
be relaxed by the parameter reduction technique shown in next
subsection.

The experimental results for the E-set and the ISOLET
database are shown in Tables I and II, respectively. They
demonstrate that, at the same number of HMM states (i.e.,
the same number of single Gaussian pdfs), substate tying
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TABLE I
ERRORRATE (%) OF VARIOUS PARAMETER-SHARING TECHNIQUES ON THE

E-SET SPEECHDATABASE (N = 7�21,M = 18,K = 18N ,L = 18N )

TABLE II
ERRORRATE (%) OF VARIOUS PARAMETER-SHARING TECHNIQUES ON THE

ISOLET DATABASE (N = 7�21,M = 52,K = 52N ,L = 52N )

offer consistent performance gains over CHMM, standard
TMHMM, and TMHMM-based whole-state tying. Although
the number of mixing coefficients are increased from TMHMM
to TS-TMHMM, this additional complexity is minimal after
probabilistic dynamic reduction is applied to both GMCM and
SMCM, as has been described in Section III-B.

B. Parameter Reduction

Parameter reduction in TS-TMHMM can be performed over
various sets of parameters, including Gaussian pdfs and mixing
coefficients in the GMCM and SMCM of Figs. 2 and 3. As de-
scribed in Section III-B, Gaussian pdfs and submixtures are re-
duced based on the minimum-PCE criterion, while the column
elements of GMCM and SMCM are dynamically thinned. We
performed several experiments to investigate the feasibility and
merits of the reduction procedure., , and
are chosen dynamically so that a fixed percentage (10% in our
experiments) of parameters are eliminated in each parameter set
during each parameter reduction iteration, with a total of 5 iter-
ations for each experiment. The TS-TMHMM parameters were
initialized as described in the previous subsection.

Tables III–VI show the E-set performance before and after
each type of parameter reduction, at a typical number of states
per HMM. Table III shows that about 30% of the Gaussian pdfs
can be removed without significant loss of accuracy. Similarly
in Table IV, 40% of the submixtures can be eliminated with min-
imal impact on system performance. Tables V and VI show that,
on the average, about 80% of the elements can be discarded from
GMCM and SMCM with little or no increase in recognition
error. The results demonstrate that, at least for the E-set data-
base, various free parameter sets can be substantially reduced
in TS-TMHMM at the cost of minimal decline in performance.

TABLE III
THE IMPACT OF MINIMUM -PCE GAUSSIAN pdf REDUCTION ON

E-SET PERFORMANCE(BEFOREREDUCTION, N = f7; 13; 19g,
M = 18,K = 18N )

TABLE IV
THE IMPACT OF MINIMUM -PCE SUBMIXTURE REDUCTION ON E-SET

PERFORMANCE(BEFOREREDUCTION, N = f7; 13; 19g,M = 18,
K = 18N , L = 18N )

TABLE V
THE IMPACT OF DYNAMIC GMCM COLUMN THINNING ON E-SET

PERFORMANCE(BEFOREREDUCTION, N = f7; 13; 19g,M = 18,
K = 18N , L = 18N , THE DIMENSION OF GMCM ISK � L)

TABLE VI
THE IMPACT OF DYNAMIC SMCM COLUMN THINNING ON E-SET

PERFORMANCE(BEFOREREDUCTION, N = f7; 13; 19g,M = 18,
K = 18N , L = 18N , THE DIMENSION OF SMCM ISK � L)

(TMHMM is a special case of TS-TMHMM and exhibits sim-
ilar behavior.)

C. CTR Experiments

The combined training and reduction algorithm has been
evaluated on the E-set database. In the below experiments, all
TMHMM parameters (including Gaussian pdfs) are initialized
by two iterations of CHMM re-estimation. All HMM models
use the same fixed number of states for each utterance. For
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Fig. 5. E-set performance comparison of TMHMM-CTR with standard
CHMM and TMHMM, shown versus model complexity.

TABLE VII
ERRORRATE (%) OF VARIOUS PARAMETER TRAINING AND PARAMETER

SHARING TECHNIQUES ON THEE-SET SPEECHDATABASE

TABLE VIII
ERRORRATE (%) OF VARIOUS PARAMETER TRAINING AND PARAMETER

SHARING TECHNIQUES ON THEISOLET DATABASE

combined training and reduction, TMHMM is initialized with
a larger number of HMM states (about 30% more than the
target number of free parameters), and is gradually downsized
to the target parameter size via three PR loop iterations (see
Fig. 4). The results are shown in Fig. 5. For the E-set database,
CTR gained in performance relative to standard CHMM
and TMHMM at the same number of parameters. Notice
that as the training set is limited, the HMM model becomes
over-trained when the number of parameters approaches
21 000. CTR-trained TMHMM achieved higher accuracy at
this level of saturation, and demonstrated its superiority over
both CHMM and TMHMM. Similar improvement had also
been achieved for the ISOLET database.

D. TS-TMHMM Design With CTR

The CTR algorithm can be applied to the design of
TS-TMHMM to realize the combined benefits of two new
approaches, as is seen from Tables VII and VIII. The results
demonstrate that, under equivalent complexity (i.e., same
number of free parameters) and for both E-set and the ISOLET
database, TS-TMHMM designed by CTR achieved over 20%
error rate reduction over TMHMM-based whole state tying, and
more than 25% error rate reduction over standard TMHMM.

V. CONCLUSION

Gaussian sharing and state tying are two approaches for
complexity reduction in HMM design. Basic TMHMM shares
Gaussians across states and classes, while state tying shares
the mixing coefficients among selected subsets of states. The
proposed substate tying (SST) method implements partial state
tying that builds on redefining state emission probabilities as
two-stage mixtures, and results in a refined tradeoff between
complexity and accuracy. The method, under the new struc-
ture of two-stage tied-mixture HMM (TS-TMHMM) jointly
optimizes Gaussian sharing and substate tying by EM-based
re-estimation. In simulations over the ISOLET database and its
E-set subset, SST reduced the recognition error rate by 15%
compared to the conventional techniques of TMHMM with
whole-state tying.

Model training is another critical problem in HMM design.
For TMHMM design, this procedure includes selection and es-
timation of the Gaussian density codebook and the mixing co-
efficients. The combined training and reduction (CTR) algo-
rithm proposed in this paper maintains complexity similar to
that of ML-based training, but employs the minimum-partial-
conditional-entropy criterion to provide improved training re-
sults. Experiments on the E-set and ISOLET database demon-
strate that CTR can reduce the recognition error rate by over
20% compared with the benchmark TMHMM model. The basic
CTR algorithm is not restricted to TMHMM, and is expected
to improve HMM training performance significantly with other
structures.

TS-TMHMM for substate tying can be further embedded
within the combined training and reduction framework to
provide additional improvement. In our experiment on the
E-set and ISOLET databases, TS-TMHMM designed by CTR
achieved more than 25% error rate reduction over conventional
TMHMM with whole-state tying. Future work will focus on
incorporation of powerful optimization tools within the CTR
framework to further exploit the potential of the framework.
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