
The 2006 LIMSI Statistical Machine Translation System for TC-STAR

Daniel Déchelotte, Holger Schwenk and Jean-Luc Gauvain

LIMSI-CNRS

BP 133, 91403 Orsay, France

{dechelot,schwenk,gauvain}@limsi.fr

Abstract
This paper presents the LIMSI statistical machine translation system developed for 2006 TC-STAR evaluation campaign. We describe
an A*-decoder that generates translation lattices using a word-based translation model. A lattice is a rich and compact representation
of alternative translations that includes the probability scores of all the involved sub-models. These lattices are then used in subsequent
processing steps, in particular to perform sentence splitting and joining, maximum BLEU training and to use improved statistical target
language models.

1. Introduction
Statistical machine translation (SMT) has gained much at-
tention within the research community during the last years.
This is in part due to its robustness to erroneous sen-
tences, for example those provided by an automatic speech
recognition system, and to the good results that have been
achieved in international evaluations. Most of the state-
of-the-art systems use context in the translation model, ei-
ther using phrases (Zens et al., 2002; Koehn et al., 2003)
or bilingualn-gram tuplets (Mariõno et al., 2005). In this
work, we only use a word-based translation model in order
to study several extensions that are not yet used in phrase-
based systems, to the best of our knowledge.
In automatic speech recognition (ASR) it is today common
practice to produce lattices as a compact representation
of plausible hypotheses. Those lattices are then used for
discriminant training, improved acoustic model adaptation,
consensus network decoding or language model rescoring.
In ASR, lattice processing generally achieves better results
than usingn-best lists. We argue that it should be promising
to also apply the lattice processing framework to SMT. We
have implemented an SMT decoder that generates as output
a rich lattice where for each word all the individual feature
function scores are available. In that way, we hope to per-
form different post-processing steps or the incorporation of
additional knowledge sources without the need of several
full decoding steps. This lattice framework is used for an
efficient sentence splitting and joining algorithm, fast max-
imum BLEU training and lattice rescoring using improved
target language models. In particular, we present a neural
network language model (LM) that takes better advantage
of the limited amount of training material.
The experimental results provided here were obtained in the
framework of the second international evaluation organized
by the European TC-STAR project. The main goal of this
evaluation is to translate public European Parliament Ple-
nary Sessions. Three different conditions are considered
in the TC-STAR evaluation: translation of the official min-
utes edited by the European Parliament (text), translation
of the transcriptions of the acoustic training data (verbatim)
and translation of speech recognizer output (ASR). Here we

consider theverbatimandASRconditions, translating from
Spanish to English only.
This paper is organized as follows. In the next section
we first describe the baseline statistical machine transla-
tion system, giving details on the search algorithm and the
lattice generation. Section 3. presents the used lattice op-
erations and section 4. summarizes the experimental eval-
uation. The paper concludes with a discussion of future
research directions.

2. SMT Decoder
The translation engine relies on the so-called IBM-4 word-
based model (Brown et al., 1993). A brief description of
this model is given below along with the decoding algo-
rithm. The translation problem is to find a target sentence
e = e1 . . . eJ that is a valid translation of a source sentence
f = f1 . . . fI . Given the fact that the translation models
are largely imperfect and are not guaranteed to produce a
grammatical target sentence, the Bayes relation is classi-
cally used:

argmax
e

Pr(e|f) = argmax
e

Pr(e) Pr(f |e) (1)

Using a generative terminology, the search problem is
hence reversed and aims at finding what target sentencee
is most likely to have produced the source sentencef . The
translation modelP (f |e) relies on four model components:

1. a fertility modeln(φ|e) that models the number (φi)
of source words generated by each target wordei;

2. a lexical model of the formt(f |e), which gives the
probability that the source wordf translates into the
target worde;

3. a distortion model, that characterizes how words are
reordered when translated;

4. and probabilities to model the word insertion of target
words that are not aligned to any source words.

The target language modelPr(e) and the four translation
submodels are combined in a log-linear fashion (Och and
Ney, 2002), the combination coefficients being optimized
on the development set.

June 19–21, 2006 • Barcelona, Spain TC-STAR Workshop on Speech-to-Speech Translation

25

2.1. Search algorithm

An A* search is performed so as to find the translation pre-
dicted by the model. The decoder manages partial hypothe-
ses, each of which translates a subset of source words into
a sequence of target words. Expanding a partial hypothesis
consists of covering one extra source position (in random
order) and, by doing so, appending one, several or pos-
sibly zero target words to its target word sequence. The
various hypotheses expansion operators are described be-
low. An admissible heuristics is used to reduce the explored
search space and is described at subsection 2.2. Details on
hypotheses management and pruning are given at subsec-
tion 2.3. Some aspects of our decoder are inspired by work
described in (Germann et al., 2001) and (Ortiz et al., 2003).

Operator “Append”
The “Append” operator appends exactly one target word
and covers exactly one source word; it generates an edge
as depicted at Figure 1. Partial costs include the translation
cost (T) and the distortion cost (D) and the target language
model cost (L). The fertility cost for the just inserted target
word is not known yet, as it may have covered more than
one source word (see the “Extend” operator below). How-
ever, the fertility cost for the previous target worde−1 is
now known and is included (F).

e =”word”
T = t(f2|e)
F = φ(. . . |e−1)
D = d=1(δ)
L = LM(e|e−2, e−1)

Figure 1: The “Append” operator

Operator “InsertNZFertAndAppend”
The “InsertNZFertAndAppend” operator appends up toN
zero-fertility target words (that cover no source words) fol-
lowed by one target word and covers exactly one source
word. This operator is required to insert non-content words,
which are typically handled by phrases in phrase-based sys-
tems. For each target worde, a short list of up to 20 target
words that are both likely to precedee and to be of fertility
0 is computed at training time. In practice,N is limited
to 1. Figure 2 shows an example. In comparison to the
“Append” operator, the edges holds two additional costs:
the target language model and the null fertility costs for the
inserted target word.

e =”word”
T = t(f2|e)

D = d=1(δ)
L = LM(e|e−1, e

′)

e′ =”word”

F = φ(. . . |e−1) + φ(0|e′)

L = LM(e′|e−2, e−1)

Figure 2: The “InsertNZFertAndAppend” operator

Operator “Extend”
The “Extend” operator covers one source word by extend-
ing the last target word, thus inserting no target word. In-
stead, the running fertility ofe is incremented. Figure 3
shows in particular the different distortion cost.

e = ε
T = t(f2|e)

D = d>1(δ)

Figure 3: The “Extend” operator

Operator “CoverWithE0”
The “CoverWithE0” operator only applies when at least
half of the source words are already translated. It aligns
all uncovered source words to the null target worde0, with-
out producing any “real” target words. It is the only oper-
ator that produces a complete translation hypothesis and is
therefore mandatory (even if all source positions are cov-
ered by regular target words) because it specifies the spon-
taneous insertion cost (S) and the final target language
model cost. Figure 4 shows an example where the last
source word is aligned toe0. Only with this expansion op-
erator, a spontaneous cost is computed as follows:

S =
(

φ0

J − φ0

)
pJ−φ0

0 pφ0
1

∏
j uncovered

t(fj |e0) (2)

where J is the source sentence length andφ0 the number of
yet uncovered source words.

e = ε

F = φ(. . . |e−1)

L = LM(</s> |e−2, e−1)
S = see equation 2

Figure 4: The “CoverWithE0” operator. It leads to the ter-
minal node of the translation graph.

Lattice generation
Decoding uses a 3-gram back-off target language model.
Equivalent hypotheses are merged, and only the best scor-
ing one is further expanded. The decoder generates a lattice
representing the explored search space. Figure 5 shows an
example of such a search space, here heavily pruned for the
sake of clarity.

2.2. Future cost heuristics

When considering which partial hypothesis should be ex-
panded at each iteration, one possibility is to only take into
account the various costs accumulated along the path, in the
translation graph, that leads to each partial hypothesis. It
is however well known that estimating the future costs can
lead to faster decoding and even better results, by positively

D. Dechelotte, H. Schwenk, J. Gauvain

26

we

I

we

should

should

must

remember

remind

remember

that

,

that

that

,

that

you

,

,

,

because
because

because

it

I

they

that

can

can

can
be

say

be

, because

can

it
they

we

that

can

can

can

be

be

have

be

have

be

have

it

it

has

forgotten

has forgotten

has

has

forgotten

forgotten

been

forgotten

been

forgotten

forgotten

.

.

forgotten

.

.

.

.

.

.

Figure 5: Example of a translation lattice. Source sentence:
“conviene recordarlo , porque puede que se haya olvidado
.” Reference 1:“it is appropriate to remember this , be-
cause it may have been forgotten .”Reference 2:“it is
good to remember this , because maybe we forgot it .”The
scores on each arc of the various statistical models are not
shown for clarity.

influencing pruning. The heuristics used in the decoder is
modeled after (Och et al., 2001).
The described heuristics is said to be admissible, meaning
that it always overestimates the future probabilities (i.e., un-
derestimates the costs of future expansions), in order to re-
tain the optimality of the search. For each source wordf
at positioni, an upper boundPi to the probability of cov-
eringf is evaluated as follows. On the one hand,f may be
covered by the null target worde0 (which corresponds to
no actual target word), with the probabilityP 0

i = t(f |e0).
On the other hand, iff is to be translated by a (fertile) tar-
get worde, the lexical, fertility and distortion submodels
should be accounted for. An upper bound to the probability
P+
i of coveringf with an actual target word is:

P+
i = max

e,φ
t(f |e) φ

√
f(φ|e)dmax (3)

wheredmax is constant: it is the maximum value the distor-
tion model can take. Finally,Pi is obtained as the minimum
of P 0

i andP+
i :

Pi = min
(
P 0
i , P

+
i

)
(4)

2.3. Hypotheses management

Partial hypotheses are stored in several queues so as to eas-
ily compare hypotheses. For a source sentence of length
J , 2J queues are created, one per subset of source posi-
tions. It is consequently possible to keep those queues rel-
atively small (usual size is 10, a size of 20 gives results
marginally different from an infinite stack size) since hy-
potheses only “compete” with hypotheses that cover the ex-
act same set of source words. Also, given the form of the
future cost heuristics (see previous section), all hypotheses
from a given queue share the heuristic future cost, which is
computed once at queue creation time.
The histogram pruning due to the limited size of the queues
is the only one that takes place during decoding. It allows

decoding of a 10-word long sentence in two seconds on
average, with decoding time almost doubling for each extra
source word.

3. Lattice Processing
The lattice framework is used to perform the following op-
erations: sentence splitting and joining, maximum BLEU
training and the incorporation of improved statistical tar-
get language models. These operations are detailed in the
following subsections.

3.1. Sentence splitting and joining

In the 2006 TC-STAR development corpus sentences
proved to be of almost arbitrary length (the maximum
length was 222 words in one segment). Our decoder is not
able to cope with such long sentences and sentence split-
ting has to occur before the actual translation. Sentences
are thus split into “chunks” of a maximum length of 16
words, as a compromise between acceptable performance
degradation and tractable translation times. Splitting long
sentences may lead to suboptimal translation for two rea-
sons:

1. word-reordering is not possible across split points;

2. translation of each chunk does not take into account
source and target texts of adjacent chunks.

To lessen the effect of the first point, sentences are prefer-
ably split at punctuation marks. However, if further split-
ting is necessary, uniform splitting is applied (so as to max-
imize the minimal length of the resulting chunks).

chunk 1 chunk2

LM(e1|<s>)
LM(|e−2, e−1)

LM(e′1|)
LM(</s> |e′−2, e

′
−1)

merged chunks

LM(</s> |e′−2, e
′
−1)

LM(e′1|e−2, e−1)LM(e1|<s>)

ε

Figure 6: Separate decoding of two chunks, followed by
translation graph fusion (with LM probabilities reestima-
tion).

As for the second point, target LM probabilities of the type
Pr(w1|<s>) andPr(</s> |wn−1wn) are usually requested
at the beginning and at the end of the hypothesized tar-
get sentence, respectively.1 This is correct when a whole
sentence is translated, but leads to wrong LM probabilities
when processing smaller chunks. Therefore, we propose to
use a sentence break symbol,, that is used at the begin-
ning and at the end of a chunk (see Figure 6). The 3-gram

1<s> and</s> denote the begin and end of sentence marker
respectively.

June 19–21, 2006 • Barcelona, Spain TC-STAR Workshop on Speech-to-Speech Translation

27

back-off LM used during decoding has been trained on text
where sentence break symbols have been added.
Each chunk is translated and a lattice is generated. The in-
dividual lattices are then joined, suppressing the sentence
break symbols. Finally the resulting lattice is rescored with
a LM that has been trainedwithoutsentence breaks. In this
way the best junction of the chunks is found. The results
section provides comparative results of the different algo-
rithms to split and join sentences.

3.2. Maximum BLEU training

As it is common practice, each of the translation submodels
and the target language model are weighted in a log-linear
fashion. In addition to a word-penalty feature, this amounts
to six feature functions. The optimization criterion is the
BLEU score on the development set.
First lattices are generated for all sentences of the develop-
ment set using a default weighting of the individual feature
functions. Then, a target sentence is extracted from each
lattice using a separate tool, and the BLEU score is cal-
culated. This tool is called in a loop in order to find the
optimal parameter values that maximize the BLEU score,
as depicted in Figure 7. The publicly available tool Con-
dor (Berghen and Bersini, 2005) is used to perform a multi-
variate search on the parameters. When inappropriate de-
fault parameters for the initial decode were chosen, it may
be necessary to repeat the whole procedure, i.e. lattice gen-
eration with better parameters, followed by Condor tuning.

λ Solution extractionDefault
λ

BLEU score Condor

Optimized λ

Figure 7: Setup to tune free parameters on development set.

This lattice procedure is comparable to the usualn-best list
processing, but we believe that the lattice frame work is
more efficient. First, the evaluation of many different hy-
pothesis is faster since lattices have usually less redundancy
thann-best lists. Second, at most two decode and param-
eter optimization cycles were needed, while usually sev-
eral ones may be necessary when usingn-best list rescor-
ing. Finally, it seems easier to use different error functions
in a lattice processing frame work, for instance minimum
Bayes-risk decoding (Kumar and Byrne, 2004).

3.3. Improved Target Language Models

Traditionally, statistical machine translation systems use a
simple 3-gram back-off language model (LM) during de-
coding to generaten-best lists. Thesen-best lists are then
rescored using a log-linear combination of feature func-
tions. In addition to the standard feature functions many
others were proposed, in particular several ones that aim
at improving the modeling of the target language. In most

SMT systems the use of a 4-gram back-off language model
usually achieves improvements in the BLEU score in com-
parison to the 3-gram LM used during decoding.
In the TC-STAR evaluation only about 35M words ofin-
domaindata are available to train the target LM. We sug-
gest to use more complex statistical LMs that are expected
to take better advantage of the limited amount of appropri-
ate training data, in particular a neural network LM (Bengio
et al., 2003). The basic idea of the neural network LM, also
called continuous space LM, is to project the word indices
onto a continuous space and to use a probability estima-
tor operating on this space. Since the resulting probabil-
ity functions are smooth functions of the word representa-
tion, better generalization to unknownn-grams can be ex-
pected. A neural network can be used to simultaneously
learn the projection of the words onto the continuous space
and to estimate then-gram probabilities. This is still an-
gram approach, but the LM posterior probabilities are ”in-
terpolated” for any possible context of lengthn-1 instead of
backing-off to shorter contexts. The neural network LM is
used to rescore the 3-gram translation lattices. More details
on this approach can be found in (Schwenk et al., 2006).

4. Experimental Results
In the 2006 TC-STAR SLT evaluation, the training material
consists of the minutes edited by the European Parliament
in several languages, also known as the EPPS Final Text
Editions (Gollan et al., 2005). These texts were aligned at
the sentence level and they are used to train the statistical
translation models. In addition, about 100h of Parliament
plenary sessions were recorded and transcribed. This data
is mainly used to train the speech recognizers, but the tran-
scriptions were also used for the target LM of the transla-
tion system (about 740k words).
reference translations are provided. Table 1 gives some
statistics about the data. Several normalization and prepro-
cessing steps were performed onto the EPPS FTE parallel
texts in order to match the style of the verbatim or ASR
condition, in particular spelling out of numbers.

Spanish English

Sentence Pairs 1.2M

Total # Words 37.7M 33.8M

Vocabulary size 129k 74k

Table 1: Statistics of the parallel texts (EPPS Final Text
Edition) used to train the SMT system.

The translation model was trained on 1.2M sentences of
parallel text using the Giza++ tool. All back-off LMs
were built using modified Kneser-Ney smoothing and the
SRI LM-toolkit (Stolcke, 2002). Separate LMs were first
trained on the English EPPS texts (33.8M words) and
the transcriptions of the acoustic training material (740k
words) respectively. These two LMs were then interpolated
together.2 An EM procedure was used to find the interpola-

2Interpolation gives usually better results than training a LM
on the pooled data.

D. Dechelotte, H. Schwenk, J. Gauvain

28

tion coefficients that minimize the perplexity on the devel-
opment data. The optimal coefficients are 0.78 for the Final
Text edition and 0.22 for the transcriptions.

4.1. Performance of the sentence splitting algorithm

In this section, we first analyze the performance of the sen-
tence split algorithm. Table 2 compares the results for dif-
ferent ways to translate the individual chunks (using a stan-
dard 3-gram LM versus an LM trained on texts with sen-
tence breaks inserted), and to extract the global solution
(concatenating the 1-best solutions versus joining the lat-
tices followed by LM rescoring). It can be clearly seen that
joining the lattices and recalculating the LM probabilities
gives better results than just concatenating the 1-best solu-
tions of the individual chunks (first line: BLEU score of
41.63 compared to 40.20). Using a LM trained on texts
with sentence breaks during decoding gives an additional
improvement of about 0.7 points BLEU (42.35 compared
to 41.63).

LM used during decoding Concatenate
1-best

Lattice
join

Without sentence breaks 40.20 41.63

With sentence breaks 41.45 42.35

Table 2: BLEU scores for different ways to translate sen-
tence chunks and to extract the global solution (Verbatim
Dev data).

In our current implementation, the selection of the sentence
splits is based on punctuation marks in the source text. Our
procedure is however compatible with other methods, as
long as the sentence split algorithm can be applied on the
LM training data so as to train the LM used during decod-
ing on text with sentence split markers. This will be inves-
tigated in a future version of our statistical machine trans-
lation system.

4.2. Using the neural network language model

The 4-gram neural network language model was trained
on exactly the same data than the back-off reference lan-
guage model, using the resampling algorithm described in
(Schwenk and Gauvain, 2005). For each experiment, the
parameters of the log-linear combination were optimized
on the development data. Although the neural network LM
could be used alone, better results are obtained when in-
terpolating it with the 4-gram back-off LM. It even turned
out advantageous to train several neural network LMs with
different context sizes and to interpolate them altogether.
For the sake of simplicity we will still call this interpola-
tion the neural network LM. More details on the architec-
ture and the training procedure are given in (Schwenk et
al., 2006). Table 3 summarizes the perplexities on the de-
velopment data of the different LMs and the impact on the
translation quality when they are used to rescore the lat-
tices.
Using a 4-gram back-off LM gives an improvement of 1
point BLEU compared to a 3-gram back-off LM. The neu-
ral network LM achieves an additional improvement of 1

Back-off LM Neural LM

3-gram 4-gram 4-gram

Perplexity 85.5 79.6 65.0

BLEU 42.35 43.36 44.42

mWER 45.9% 45.1% 44.4%

mPER 31.8% 31.3% 30.8%

Table 3: Result comparison when using different LMs
to rescore the translation lattices (Verbatim Dev data).
mWER=word error rate, mPER=position independent
WER, both using multiple references.

point BLEU, on top of the 4-gram back-off LM. Small im-
provements of the word error rate (mWER) and the position
independent word error rate (mPER) were also observed.
In a contrastive experiment, the LM training data was sub-
stantially increased by adding 352M words of commercial
Broadcast News data and 232M words of CNN news col-
lected on the Internet. Although the perplexity of the 4-
gram back-off LM decreased by 5 points to 74.1, we ob-
served no change in the BLEU score. In order to estimate
the oracle BLEU score of our lattices, we built a 4-gram
back-off LM on the development data. Lattice rescoring
achieved then a BLEU score of 59.10.

4.3. Translation of speech input

The translation was performed on a ROVER system com-
bination of all the ASR systems that had participated in the
TC-STAR evaluation. The word error rate is 7.1% and 6.9%
on the development and test data, respectively. When trans-
lating speech input, several specificities must be addressed.
First, the standard MT quality measures like BLEU or the
NIST score suppose that for each reference sentence an hy-
pothesis is generated. This can not be guaranteed when
translating speech input since the reference segmentation
is not known. In the 2006 TC-STAR evaluation, automatic
segmentation of the speech signal was used and the scoring
of the MT system was performed by finding automatically
the best alignment of the produced hypothesis with the ref-
erence translations (Matusov et al., 2006).
Second, case and punctuation are traditionally not taken
into account when measuring ASR accuracy, due to the dif-
ficulty to come up with a gold standard for these matters.
Translation systems, however, are trained on data with case
information and rich punctuations, and applying those sys-
tems on raw ASR output leads to a mismatch between train-
ing and testing conditions. The ROVER input provided to
translation systems contains some case information, as well

,
.

[sil]

Word

WORD

word

Figure 8: Lattice fragment generated for each word in
ROVER input.

June 19–21, 2006 • Barcelona, Spain TC-STAR Workshop on Speech-to-Speech Translation

29

as some minimal punctuation (some final points, when an
end of sentence is detected). In order to minimize the mis-
match between the ROVER input and the training texts, the
input was preprocessed in the following way: Each word
was replaced by a fragment of word lattice of the form of
Figure 8. Segment boundaries were then inserted at pauses
greater than 80 ms, and optional ones at other pauses. Last,
the resulting lattice was rescored using a regular 4-gram
LM, with parameters adapted so as to reproduce the num-
ber of punctuation signs in the development data.
Finally, close coupling of speech transcription and transla-
tion can be envisaged usingn-best lists or lattices. This
was not used in this evaluation given the low ASR word er-
ror rate. We simply translated the 1-best ASR hypothesis.
The results for the ASR condition are given in Table 4.

Back-off LM Neural LM

3-gram 4-gram 4-gram

BLEU 32.70 33.74 34.35

Table 4: Result on the Dev data for the ASR condition.

For this condition, the improvement brought be the neural
network LM is smaller (0.6 points BLEU). This might be
explained by the fact that there are more grammatical errors
in the target sentences (due to the error in the source sen-
tences produced by the ASR module), which complicates
the task of the target language model.

4.4. Evaluation results

Table 5 summarizes the results obtained on the evaluation
data using the same coefficients of the log-linear feature
function combination than for the development set.

Back-off LM Neural LM

3-gram 4-gram 4-gram

Verbatim, BLEU 39.77 40.62 41.45

mWER 48.2% 47.4% 46.7%

mPER 33.6% 33.1% 32.8%

ASR, BLEU 31.50 31.40 31.86

Table 5: Performance on the evaluation data.

As usually observed in SMT systems, the improvements
obtained on the evaluation data are smaller than those ob-
tained on the Dev data. Using the 4-gram increases the
BLEU score by 0.85 points (+1.0 on Dev), and the neu-
ral network LM achieves an improvement of 0.83 points
BLEU (+1 on Dev). The results on the evaluation data
for the ASR condition are somewhat surprising: the 4-
gram achieves worse results than the 3-gram due to a large
brevity penalty (0.922 for the 4-gram and 0.955 for the 3-
gram).

5. Conclusion
We have described the LIMSI statistical machine transla-
tion system developed for the 2006 TC-STAR evaluation.
Our decoder creates rich lattices that are used to perform
sentence splitting and joining, maximum BLEU training
and to use a neural network target language model. These
techniques achieved improvements in the BLEU score of
several points. Although our system uses only word-based
translation models, it achieved performances that are close
to those of phrase-based systems.
Future work will concentrate on different techniques to use
context dependent translation models and on the incorpora-
tion of higher-level knowledge sources.

6. References
Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian

Jauvin. 2003. A neural probabilistic language model.Journal
of Machine Learning Research, 3(2):1137–1155.

Frank Vanden Berghen and Hugues Bersini. 2005. CONDOR, a
new parallel, constrained extension of powell’s UOBYQA al-
gorithm: Experimental results and comparison with the DFO
algorithm. Journal of Computational and Applied Mathemat-
ics, 181:157–175.

P. Brown, S. Della Pietra, Vincent J. Della Pietra, and R. Mer-
cer. 1993. The mathematics of statistical machine translation.
Computational Linguistics, 19(2):263–311.

Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and
Kenji Yamada. 2001. Fast decoding and optimal decoding for
machine translation. InACL, pages 228–235.

C. Gollan, M. Bisani, S. Kanthak, R. Schlueter, and H. Ney. 2005.
Cross domain automatic transcription on the TC-STAR EPPS
corpus. InICASSP.

Philipp Koehn, Franz Joseph Och, and Daniel Marcu. 2003. Sta-
tistical phrase-based translation. InHLT.

S. Kumar and W. Byrne. 2004. Minimum bayes-risk decoding for
statistical machine translation. InHLT, pages 169–176.

J. Mariõno, R. Blanchs, J. Crego, A. de Gispert, P. Lambert, M. R.
Costa-juss̀a, and J. Fonollosa. 2005. Bilingual n-gram statisti-
cal machine translation. InMT-Summit X.

E. Matusov, N. Ueffing, and H. Ney. 2006. Computing consensus
translation from multiple machine translation systems using en-
hanced hypotheses alignment. InEACL.

Franz Josef Och and Hermann Ney. 2002. Discriminative train-
ing and maximum entropy models for statistical machine trans-
lation. InACL, pages 295–302, University of Pennsylvania.

Franz Jospeh Och, N. Ueffing, and Hermann Ney. 2001. An ef-
ficient A* search algorithm for statistical machine translation”.
In ACL, pages 55–62.

D. Ortiz, I. Garćıa-Varea, and F. Casacuberta. 2003. An empirical
comparison of stack-based decoding algorithms for statistical
machine translation. InIberian Conference on Pattern Recog-
nition and Image Analysis, IbPRIA, pages 654–663.

Holger Schwenk and Jean-Luc Gauvain. 2005. Training neural
network language models on very large corpora. InEMNLP,
pages 201–208.

Holger Schwenk, Daniel D́echelotte, and Jean-Luc Gauvain.
2006. Continuous space language models for statistical ma-
chine translation. InColing/ACL.

Andreas Stolcke. 2002. SRILM - an extensible language model-
ing toolkit. In ICSLP, pages II: 901–904.

R. Zens, Franz Josef Och, and Hermann Ney. 2002. Phrased-
based statistical machine translation. InGerman Conference
on Artificial Intelligence (KI 2002), pages 18–32.

D. Dechelotte, H. Schwenk, J. Gauvain

30

