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Abstract
Combining automatic speech recognition and machine transla-
tion is frequent in current research programs. This paper first
presents several pre-processing steps to limit the performance
degradation observed when translating an automatic transcrip-
tion (as opposed to a manual transcription). Indeed, automati-
cally transcribed speech often differs significantly from the ma-
chine translation system’s training material, with respect to ca-
seing, punctuation and word normalization. The proposed sys-
tem outperforms the best system at the 2007 TC-STAR eval-
uation by almost 2 points BLEU. The paper then attempts to
determine a criteria characterizing how well an STT system can
be translated, but the current experiments could only confirm
that lower word error rates lead to better translations.
Index Terms: ASR, MT, segmentation, punctuation, normal-
ization, joint optimization

1. Introduction
Automatic text translation is a challenging task that researchers
and engineers have been tackling for more than 40 years. Yet,
even though translating well-formed texts is still a largely unan-
swered problem, recent and current projects [1, 2, 3] raise fur-
ther up the bar as they require the translation systems to pro-
cess the output of automatic speech recognition (ASR) systems.
This article addresses two problems that specifically arise when
a system combines ASR and machine translation (MT). The first
difficulty is the various discrepancies between the training ma-
terial used by the MT system and the data being actually trans-
lated during testing. The second open question relates to the
tuning of the ASR system in order to globally maximize the
system’s end-to-end performance from the audio to the text in
the target language. Both problems are discussed below.

Translating ASR output is arguably quite a different prob-
lem than translating formal texts. The literature already pro-
vides several discussions on mitigating the impact of recogni-
tion errors, for instance by handling ASR’s ambiguous output
(e.g., under the form of word lattices). In the first part of this ar-
ticle, we describe how our system addresses the following three
items:

1. The transcription may contain disfluencies, which natu-
rally occur in speech. MT systems should recognize and
ignore hesitations, repetitions and false starts.

2. Speech is not explicitly segmented into sentences, and
recovering that segmentation automatically is a challeng-
ing task that involves both acoustical and linguistic in-
formation. Moreover, clear conventions are lacking with
respect to the placement of finer punctuation marks (e.g.,
commas, columns) and ASR system are therefore often
built and tuned without punctuation marks.

3. Finally, ASR’s text normalization might differ from the
one expected by the MT system, which could lead to sub-
optimal translation. Translating the output from exter-
nal ASR systems, or the ROVER combination of various
systems, is particularly subject to this pitfall.

The second part of this work aims at confirming or infirm-
ing the intuition that a STT system that breaks phrases might
lead to poorer translations when translated by a phrase-based
MT system than a STT system of comparable word error rate
(WER) that preserves more phrases, as suggested by [4].

The translation performance (as measured with BLEU) of
a STT+MT system correlates generally well with ASR’s WER
[5, 6], a result that matches the intuitive assumption that the
best overall performance is obtained when translating the ASR
output of lowest WER. However, [5] compared different outputs
produced by a single system using consensus decoding across
all experiments.

In this work, translating the ROVER combination of vari-
ous speech-to-text (STT) systems is compared to translating the
output of a single system, performing consensus decoding or
not. The translation performance appears to remain strongly
correlated with ASR WER, although a tiny “inversion” (worse
ASR WER but better translation) was observed once.

The paper is organized as follows. Section 2 describes the
data and the system used in all the experiments. Section 3 de-
tails the steps that make the ASR output resemble MT’s training
data, and Section 4 describes the different STT systems consid-
ered for translation. Lastly, Section 5 presents the results of the
two sets of experiments and discusses them.

2. Experimental framework

2.1. Data

The task considered in this work is the translation of the Eu-
ropean Parliament Plenary Sessions (EPPS) from English to
Spanish, in the framework of the TC-STAR project. The lat-
ter is envisaged as a long-term effort to advance research in all
core technologies for speech-to-speech translation. The pro-
posed MT system participated to the 2007 TC-STAR interna-
tional evaluation campaign, translating between Spanish and
English (both ways), under the “verbatim” condition (manual
transcriptions of the acoustic data) and the “ASR” condition
(automatic transcriptions)1.

The figures reported in this article were obtained on the
2006 development set and the 2007 evaluation set.

1See http://www.elda.org/en/proj/tcstar-wp4/ for
details on the specifications and the available training data.
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2.2. System description

The MT system used in this paper is built upon the open-source,
state-of-the-art phrase-based decoder Moses[7], and was trained
with the scripts distributed with the software package.

The translation process employs a two-pass strategy. In the
first pass, Moses generates n-best lists—1000 distinct hypothe-
ses are requested—with a standard 3-gram language model and
provides eight partial scores for each hypothesis. In the sec-
ond pass, the n-best lists are rescored with a 4-gram continuous
space language model[8] and the final hypothesis is then ex-
tracted. Each of the two passes uses its own set of eight weights
and is tuned separately.

3. Making ASR output resemble MT’s
training data

In this section, we present the steps that attempt to renormalize
the ASR’s output so that it matches more closely the translation
training data. The ASR’s output is available under the “time
marked conversation” CTM format, which holds some time and
duration information along with the words themselves.

3.1. Case and punctuation

STT systems historically produced a case insensitive output,
without punctuation or sentence segmentation. Nowadays, even
if the reference transcription is punctuated and in true case, the
de facto reference score remains the case insensitive, unpunctu-
ated WER, because of remaining standardization issues both in
capitalization (for words like “Project”, “Program”, “Commit-
tee”, etc) and punctuation (for all punctuation marks but espe-
cially the comma). As a consequence, in order to achieve better
translations, it is often necessary to re-punctuate and optionally
to re-case STT’s outputs or their ROVER combination.

[9] preserves the segmentation provided by the ASR en-
gine and inserts commas based on linguistic features (bi- and
tri-gram probabilities). [10] explores different strategies; on the
same task as this article, predicting first the sentence segmenta-
tion and then the punctuation performs well. In this work, we
first remove any case information and punctuation marks the in-
put CTM file may contain, and recompute them in one pass as
follows.

Both the words and the timing information contained in the
input CTM are used to generate a flat, consensus-like lattice.
More precisely, each word in the CTM file leads to the creation
of one node and three edges, to account for its three alterna-
tive capitalizations (all-lowercase, capitalized or all-uppercase).
Between words, edges are created as shown in Figure 1 to op-
tionally insert a period or a comma.

mister

Mister

MISTER

.PERIOD

,COMMA

[sil]

Figure 1: Sample lattice generated for one word of the input
CTM file. “[sil]” is a spontaneous transition inserting no word.

The constituted lattice is then rescored by a special-purpose
language model. This language model is created by interpolat-
ing several language models trained on the same data but using
purposely different word normalizations with respect to com-

pound words (prefixes and suffixes hyphenated or separated)
and acronyms (spelled out or in one token). This allows the
resulting language model to be able to restore the case and the
punctuation for texts of unknown word normalization.

Frequencies of periods and commas have been computed
over the EPPS training corpus and the available development
data to provide characteristics to aim for. It was estimated that
3.5% of all tokens were periods and 5% were commas, amount-
ing to roughly one period every 29 tokens and one comma every
20 tokens. Two quantities may be tuned in the proposed algo-
rithm:

1. the penalty (or bonus) held by the edges with a punctua-
tion mark (see lattice excerpt in Figure 1),

2. a duration τ used as follows: a mandatory period is in-
serted at pauses longer than τ .

These two quantities were tuned minimizing the sum of the
quadratic errors (the differences between the target frequencies
and the observed ones). A local optimum that achieved 3.8%
of periods and 4.8% of commas was reached; at this optimum,
τ = 1.6 seconds.

3.2. Disfluency removal, and normalizations

Hesitations and filler words are easy to spot and remove—the
complete list is eh, uh, uhm, huh and mmm. Additionally, re-
peated words are removed, leaving only the first occurrence.

The normalization required for the MT system might differ
from the one of the STT system, for example for key words like
Mister or Mrs.. Spelled out acronyms (N. A. T. O.) are
consolidated into a single word, as they appear in the MT train-
ing data.

Lastly, STT’s output might contain a relatively high fre-
quency of contracted forms, such as it’s or can’t. It may
indeed be beneficial for a STT system to output, e.g., it’s
since during scoring a global map (GLM) file will make it also
match it is and it has as needed. Those contracted forms
are present in the EPPS data, but at a much lower frequency, and
are therefore expanded before translation. In this work, ambigu-
ous forms were deterministically expanded to an arbitrary, but
likely, form. For example, it’s was systematically expanded
to it is and I’d to I would.

3.3. Recomposition of compound words

Part of the normalization differences between an STT system
and an MT system can be the way they deal with compound
words. Some prefixes, like pro-, anti-, trans- and others,
as well as some suffixes like -like, are extremely generative,
meaning that they are susceptible to be associated with many
words, enlarging significantly the vocabulary size. For an STT
system, handling all these compounds can quickly become a
burden, since pronunciations have to be generated for each of
them, and the language model may face data sparseness issues.
Moreover, the scoring tool usually splits words with hyphens,
so there are no adverse effects of producing pro-European
as one word or pro European as two words. MT systems on
the other hand are expected to produce compounds in one word,
hence they were not split in the training data.

Instead, a tool was designed to recover the compound words
when needed. This tool uses n-gram counts extracted from the
training data used by the MT system to, e.g., produce the com-
pound word pro-US should this unigram be more frequent in
the training data than the bi-gram pro US. Compounds with

2442



up to three hyphens (such as end-of-the-year) may be
recreated this way.

4. Translating the output of different STT
systems

This section considers three STT systems and translates their
output. In these experiments, all the processing steps described
in the previous section are applied before translation.

4.1. STT systems

The first considered system is the ROVER combination of var-
ious ASR systems. The experiments on the test data uses the
official TC-STAR ROVER combination, and a combination of
the same systems was performed internally for the experiments
on the development data.

The second system is the Limsi system [11], which per-
forms consensus decoding [12] (CD) to produce its 1-best hy-
pothesis. The third system consists of the same system using
maximum a posteriori (MAP) decoding, without CD.

4.2. Evaluating the ASR outputs

In addition to the standard WER, a BLEU score [13] is com-
puted against the reference transcription for each ASR output.
The tool from [14] performed the necessary automatic reseg-
mentation.

All scores are computed in a case insensitive manner and
ignoring punctuation, which is consistent with the fact that the
data is re-cased and re-punctuated before the actual translation.

5. Results and discussion
5.1. On the impact of weight tuning

As said earlier in this paper, our MT system may be tuned
thanks to two sets of eight weights, one set per pass. Because
tuning first-pass weights is time consuming, and since we had
carefully tuned a system for the verbatim condition, we decided
to re-use its first-pass weights for the ASR condition system.
The second-pass weights were however tuned specifically for
the ASR condition, yielding a consistent increase of 0.35 to
0.40 absolute %BLEU in all cases on the development set. The
improvement was confirmed on unseen data, albeit with lower
gains ranging from 0.15 to 0.20. Consequently, all results on
the test set reported in this paper use the ASR-specific weights.

However, we informally reran the experiments on the test
set with the verbatim weights and found that they consistently
outperformed the ASR weights by 0.15 to 0.25 depending on
the case. Although those discrepancies are well below the sig-
nificance threshold, it might be worth investigating the stability
of function points, especially with an inherently unreliable input
such as an ASR output.

5.2. Experiments on renormalizing the ASR output

The three procedures described at Section 3 are evaluated sys-
tematically on the development data and the test data. Because
the usefulness of the renormalizing scripts is likely to depend
on the input type, their effects on the ROVER and the Limsi
outputs2 have been compared.

2Table 1 shows the ASR WER of the four CTMs translated in these
experiments.
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Figure 2: Relative performances of the preprocessing steps de-
scribed at Section 3. “As is”: translation of the CTM file
provided by the evaluation committee, only available for the
ROVER output on the evaluation data. CasePunct: prior to
translation, restoration of case and punctuation. DisflNorm:
disfluency removal and renormalization. Compounds: com-
pound recomposition.

5.2.1. Impact of case and punctuation

Because the script used by the evaluation committee to restore
the case and some punctuation is unknown, it was difficult to as-
sess the usefulness of our own procedure before the evaluation
took place. Afterwards, however, it became possible to compare
the performances of translating the provided CTM file “As is”
or after applying “CasePunct” (see Figure 2). With an increase
greater than 3 points BLEU, from 37.4 to 40.6, this step appears
to play a crucial role in reducing the mismatch between a typi-
cal ASR output and what our MT system expects to perform at
its best3.

To account for the performance discrepancy, we computed
the frequencies of commas and periods on the two inputs “As
is” and “CasePunct”. The CTM file “As is” contained 3.18% of
periods and a mere 0.46% of commas, as opposed to 4.09% of
periods and 4.99% of commas in the CTM after “CasePunct”.
The lack of commas in the “As is” file has two effects. First, its
translation does not contain enough tokens and its BLEU score
is severely hit by a brevity penalty of 0.934, whereas it reaches
0.981 after “CasePunct”. Second, even without applying the
brevity penalty, “CasePunct” achieves better precision scores
and obtains an unpenalized BLEU score of 41.4, although “As
is” only scores 40.0. This indicates that not only the punctu-
ation helps avoid the BLEU brevity penalty, it is also useful
to pick the right phrases and, eventually, to produce a correct
translation.

5.2.2. Impact of disfluency removal and renormalization

The impact of “DisflNorm” is positive in all cases, although
its importance varies. On ROVER output, “DisflNorm” pro-
vides gains of 0.6 on the development data and 0.4 on the test
data. Most of the changes consists of acronym restorations and
contracted form expansions. On the Limsi output, the kinds of

3To put those number into perspective, our official system, which in-
cluded preliminary versions of “DisflNorm” and “Compounds” but not
“CasePunct”, achieved a BLEU score of 37.6, and the best submitted
system obtained 39.2.
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changes are quite different, with the expansion of contracted
form representing most of the changes, followed by the renor-
malization of Mr. and Mrs. and the handling of acronyms,
yielding 1.6 points BLEU on the development data and 1.4 on
the test data.

5.2.3. Impact of compound recomposition

“Compounds” modified half less words than “DisflNorm” did,
and its impact in BLEU is even slighter, although always pos-
itive, with gains ranging from just above 0.1 to 0.3. It notice-
ably allowed the MT system to correctly translate numbers like
twenty two into veintidós instead of veinte dos.

5.3. Experiments with different STT systems

Set
ASR MT

System WER BLEU # phr. BLEU

D
ev

06 Rover 7.18 70.22 2231k 43.58
Limsi CD 9.14 63.98 2260k 42.95
Limsi MAP 9.53 63.92 2264k 43.05

E
va

l0
7 Rover 7.08 67.92 2103k 41.15

Limsi CD 9.33 61.29 2123k 40.30
Limsi MAP 9.66 61.14 2130k 40.19

Table 1: Translation of different STT systems. ASR columns:
the system’s name, its WER and its BLEU score against the
manual transcription. MT columns: the size of the filtered
phrase table and the translation BLEU score.

Table 1 gathers the results obtained in this series of exper-
iments. The upper-half of the table (dev06) contains a surpris-
ing inversion: although Limsi MAP has as expected a higher
WER than Limsi CD, its translation is better by a short mar-
gin. In an attempt to explain this inversion, we compared the
number of phrase pairs whose source counterpart is included
in the input text. Limsi MAP “recruits” slightly more phrase
pairs than Limsi CD and ROVER, which is in no way an in-
dicator of better translations but tends to confirm our intuition
that performing CD on a single system “breaks phrases” and
performing a ROVER combination even more so. We then com-
puted the ASR-BLEU for all systems, since this score also takes
into account phrases of up to four words. However, Limsi CD
was found to score a higher BLEU than Limsi MAP. In addi-
tion, the inversion did not occur on the eval07 data, preventing
us from drawing any definitive conclusion at that point, except
that ASR-WER remains in these experiments the best indicator
of the overall ASR+MT performance.

6. Conclusion

In the context of machine translation of automatic speech recog-
nition output, we first proposed several processing steps that
modify the ASR output so that it resembles the MT’s training
data with respect to caseing, sentence segmentation, punctua-
tion and word normalization, allowing the described system to
outperform the best system at the 2007 TC-STAR evaluation by
almost 2 points BLEU. We then carried out experiments to de-
termine a criteria characterizing how well an STT system can
be translated, but we were only able to observe that lower ASR-
WERs lead to better translations.
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